MAX materials and MXene materials are new two-dimensional materials which have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. The following is a comprehensive overview of the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three components of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is actually a new kind of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main-group elements, and X refers back to the elements of C and N. The MXene material is a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have a variety of applications in structural materials. For instance, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also utilized in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be found in energy materials. As an example, K4(MP4)(P4) is one from the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The top of MXene materials can interact with more functional atoms and molecules, along with a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching therapy for the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials certainly are a new form of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are popular in energy storage and conversion. For instance, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials may also be used as catalysts in fuel cells to boost the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. In addition, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials will be further expanded and improved. The following aspects may become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and methods could be further explored to comprehend a more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, there is however still room for further optimization. In the future, the composition, structure, surface treatment along with other elements of the content may be studied and improved comprehensive to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be popular in numerous fields, but you may still find many potential application areas to become explored. Later on, they can be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in numerous fields. With all the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.